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Abstract

The Bayou System is a platform of replicated, highly-
available, variable-consistency, mobile databases on
which to build collaborative applications. This paper pre-
sents the preliminary system architecture along with the
design goals that influenced it. We take a fresh, bottom-up
and critical look at the requirements of mobile computing
applications and carefully pull together both new and
existing techniques into an overall architecture that meets
these requirements. Our emphasis is on supporting appli-
cation-specific conflict detection and resolution and on
providing application-controlled inconsistency.

1.  Introduction

The Bayou project at Xerox PARC has been designing
a system to support data sharing among mobile users. The
system is intended to run in a mobile computing environ-
ment that includes portable machines with less than ideal
network connectivity. In particular, a user’s computer may
have a wireless communication device, such as a cell
modem or packet radio transceiver relying on a network
infrastructure that is not universally available and perhaps
unreasonably expensive. It may use short-range line-of-
sight communication, such as the infrared “beaming” ports
available on some commercial personal digital assistants
(PDAs). Alternatively, the computer may have a conven-
tional modem requiring it to be physically connected to a
phone line when sending and receiving data or may only
be able to communicate with the rest of the system when
inserted in a docking station. Finally, its only communica-
tion device may be a diskette that is transported between
machines by humans. The main characteristic of these
communication capabilities is that a mobile computer may
experience extended and sometimes involuntary discon-
nection from many or all of the other devices with which it
wants to share data.

We believe that mobile users want to share their
appointment calendars, bibliographic databases, meeting
notes, evolving design documents, news bulletin boards,
and other types of data in spite of their intermittent net-
work connectivity. The focus of the Bayou project has
been on exploring mechanisms that let mobile clients
actively read and write shared data. Even though the sys-
tem must cope with both voluntary and involuntary com-
munication outages, it should look to users, to the extent
possible, like a centralized, highly-available database ser-
vice. This paper presents detailed goals for the overall sys-
tem architecture and discusses the design decisions that
we made to meet these goals.

2.  Architectural design decisions

Goal: Support for portable computers with limited
resources.

Design: A flexible client-server architecture.

Many of the devices that we envision being com-
monly used, such as PDAs and the ParcTab developed
within our lab [24], have insufficient storage for holding
copies of all, or perhaps any, of the data that their users
want to access. For this reason, our architecture is based
on a division of functionality betweenservers, which store
data, andclients, which read and write data managed by
servers. A server is any machine that holds a complete
copy of one or moredatabases. We use the term “data-
base” loosely to denote a collection of data items; whether
such data is managed as a relational database or simply
stored in a conventional file system is left unspecified in
the architecture. Clients are able to access data residing on
any server to which they can communicate, and con-
versely, any machine holding a copy of a database, includ-
ing personal laptops, should be willing to service read and
write requests from other nearby machines.
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We expect that portable computers will be servers for
some databases and clients for others. A commonly occur-
ring case may be several users disconnected from the rest
of the system while actively collaborating; a canonical
example is a group of colleagues taking a business trip
together. Rather than giving the members of this discon-
nected working group access to only the data that they had
the foresight to copy to their personal machine, the Bayou
design lets any group member have access to any data that
is available in the group.

Thus, the Bayou architecture differs from systems like
Coda [23][17] that maintain a strong distinction between
servers, which hold databases or file volumes, and clients,
which hold personal caches. Permitting “lightweight”
servers to reside on portable machines is similar to the
approach taken to support mobility in Lotus Notes [16] or
Ficus [12].

Goal: High availability for Reads and Writes.

Design: Read-any/write-any weakly consistent replica-
tion.

Replication is absolutely required in order for non-
connected users to access a common database. Many algo-
rithms for managing replicated data, such as those based
on maintaining strong data consistency by atomically
updating all available copies [4], do not work well in a
partitioned network, particularly if site failures cannot be
reliably detected. Server-initiated callbacks for cached
data invalidation present similar problems. Quorum based
schemes [3][10], which can accommodate some types of
network partitions, do not work for disconnected individu-
als or small groups. Algorithms based on pessimistic lock-
ing are also unattractive since they severely limit
availability [7][8] and perform poorly when message costs
are high [6], as is generally the case in mobile environ-
ments [1].

To maximize a user’s ability to read and write data,
even while completely disconnected from the rest of the
computing environment, we chose aread-any/write-any
replication scheme, as was first used in Grapevine [5].
That is, a user is able to read from and write to any copy of
the database. We cannot guarantee the timeliness with
which writes will propagate to all other replicas since
communication with many of these replicas may be cur-
rently infeasible. Thus, the replicated databases are only
weakly consistent. Techniques for managing weakly con-
sistent replicated data, desired not only for their high
availability but also for their scalability and simplicity,
have been employed in a variety of systems
[5][9][11][16][19].

Goal: Reach eventual consistency while minimizing
assumptions about communication characteristics.

Design: Peer-to-peer anti-entropy for propagation of
updates.

Servers propagate writes among copies of the data-
base using an “anti-entropy” protocol [9]. This process is
often called “reconciliation” when used to synchronize file
systems [11][13]. Anti-entropy ensures that all copies of a
database are converging towards the same state and will
eventually converge to identical states if there are no new
updates. To achieve this, servers must not only receive all
writes but must also order them consistently.

Peer-to-peer anti-entropy is adopted to ensure that any
two machines that are able to communicate will be able to
propagate updates between themselves. Even machines
that never directly communicate can exchange updates via
intermediaries. Each server periodically selects another
server with which to perform a pair-wise exchange of
writes; the server selected depends on its availability as
well as the expected costs and benefits. At the end of this
process, both servers have identical copies of the database,
that is, they have the same writes effectively performed in
the same order. Anti-entropy can be structured as an incre-
mental process so that even servers with very intermittent
or asymmetrical connections can eventually bring their
databases into a mutually consistent state.

Goal: System support for detection of update conflicts.

Design: Dependency checks on each write.

Because clients may make concurrent writes to differ-
ent servers or may attempt to update some data based on
reading an out-of-date copy, update conflicts are unavoid-
able in a read-any/write-any replication scheme. These
conflicts have two basic forms:write-write conflicts in
which two clients update the same data item (or sets of
data items) in incompatible ways, andread-write conflicts
in which a client updates some data based on reading the
value of another data item that is being concurrently
updated by a second client (or was previously updated on
a different server than the one being read) [8].

Version vectors, as developed for Locus [21], or sim-
ple timestamps are popularly used to detect write-write
conflicts [11][13][14][23]. Read-write conflicts can be
detected by recording and later checking an application’s
read-set [8]. These techniques ignore the applications’
semantics. Consider a calendar manager in which users
interactively schedule meetings by selecting blocks of
time. A conflict, as viewed by the application, does not
occur simply because two users concurrently edit the file
containing the calendar data, but rather conflicts arise if
two users schedule meetings at the same time involving
the same attendees.

The Bayou system detects update conflicts in an
application-specific manner. A write conflict occurs when
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the state of the database differs in an application-relevant
way from that expected by a write operation. A write oper-
ation includes not only the data being written or updated
but also adependency set. The dependency set is a collec-
tion of application-supplied queries and their expected
results. A conflict is detected if the queries, when run at a
server against its current copy of a database, do not return
the expected results.

Bayou’s dependency sets can provide traditional opti-
mistic concurrency control by having the dependency que-
ries check the version stamps of any data that was read and
on which the given update depends. However, the depen-
dency checking mechanism is more general than this and
can, for example, permit “blind” writes where a client
does not have access to any copy of the database yet
wishes to inject a database update assuming that some
condition holds. An example of this is a client that, from
his laptop, wishes to schedule a meeting in a particular
room, assuming that the room is free at the desired time,
but does not currently have a copy of the room’s calendar.

Goal: Application-specific resolution of update conflicts.

Design: Merge procedure passed with each write to auto-
matically resolve conflicts.

The system, along with detecting update conflicts,
must provide means for resolving such conflicts. One
approach often taken in database systems with optimistic
concurrency control is to simply abort a conflicting trans-
action [8]. Other systems rely on humans for resolving
conflicts as they are detected. Human resolution is prob-
lematic in a mobile computing environment since a user
may submit an update to some server and then disconnect
while the write is propagating in the background via anti-
entropy; at the time a write conflict is detected, i.e. the
dependency check fails, the user may be inaccessible.

Bayou allows writes to specify how to automatically
resolve conflicts based on the premise that there are a sig-
nificant number of applications for which the order of con-
currently issued write operations is either not a problem or
can be suitably dealt with in an application-specific man-
ner at each server maintaining a copy of a database. A
Bayou write operation includes an application-specific
procedure called amergeproc that is invoked when a write
conflict is detected. This program reads the database copy
residing at the executing server and resolves the conflict
by producing an alternate set of updates that are appropri-
ate for the current database contents.

Mergeprocs resemble mobile agents [28] in that they
originate at clients, are passed to servers, and are executed
in a protected environment so that they cannot adversely
impact the server’s operation. However, unlike more gen-
eral agents, they can only read and write a server’s data-

base. A mergeproc’s execution must be a deterministic
function of the database contents and its static data.

Automatic resolution of concurrent updates to file
directories has been proposed for some time and is now
being employed in systems like Ficus [22] and Coda [18].
These systems have recently added support for applica-
tion-specific resolution procedures, similar to mergeprocs,
that are registered with servers and are invoked automati-
cally when conflicts arise [18][22]. The appropriate reso-
lution procedure to invoke is chosen based on file
properties such as the type of the file being updated.
Mergeprocs are more flexible since they may be custom-
ized for each write operation based on the semantics of the
application and the intended effect of the specific write.
For example, in the calendar application, a mergeproc may
include a list of alternate meeting times to be tried if the
first choice is already taken.

In summary, a Bayou write operation consists of a
proposed update, a dependency set, and a mergeproc. The
dependency set and mergeproc are both dictated by an
application’s semantics and may vary for each write oper-
ation issued by the application. The verification of the
dependency check, the execution of the mergeproc, and
the application of the update set is done atomically with
respect to other database accesses on the server.

Goal: Commit data to a stable value as soon as possible.

Design: Include a primary whose purpose is to commit
data and set the order in which data is committed.

Bayou’s weak consistency means that a write opera-
tion may produce the desired update at one server but be
detected as a conflict at another server thereby producing a
completely different update as the result of executing its
mergeproc. Also, a write’s mergeproc may produce differ-
ent results at different servers since its execution may
depend on the current database state. Varying results can
arise if the servers have seen different sets of previous
writes or if they process writes in different orders. To
achieve eventual consistency, servers must not only
receive all writes but must also agree on the order in which
they apply these writes to their databases. New writes
obtained via anti-entropy may need to be ordered before
writes that were previously obtained, and may therefore
cause previous writes to be undone and reapplied to the
server’s database copy. Reapplying a write may, in turn,
cause it to update the database in a different way than its
previous execution. How can a user ever be sure that the
outcome of a write it issued has stabilized?

One way to detect stability of a given write is to
gather enough information about each server to determine
that no other writes exist or will be accepted in the future
that might be ordered prior to the write. Unfortunately, the
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rate at which writes stabilize in this fashion would depend
on the rate at which anti-entropy propagates information
among all servers. A server that is disconnected for
extended periods of time could essentially delay stability
and possibly cause a large number of writes to be rolled
back later.

The Bayou design includes the notion of explicitly
“committing” a write. Once a write is committed, no other
non-committed writes will be ordered before it, and thus
its outcome will be stable. A write that has not yet been
committed is called “tentative”. A Bayou client can
inquire as to whether a given write is committed or tenta-
tive. One way to commit a write would be to run some sort
of consensus protocol among a majority of servers. How-
ever, such protocols do not work well for the types of net-
work partitions that occur among mobile computers.

Instead, each Bayou database has one distinguished
server, the “primary”, which is responsible for committing
writes. The other, “secondary” servers tentatively accept
writes and propagate them toward the primary using anti-
entropy. As secondary servers contact the primary, their
tentative writes are converted to committed writes, and a
stable commit order is chosen for those writes by the pri-
mary server. Knowledge of committed writes and their
ordering propagates from the primary back to the second-
aries, again via anti-entropy. The existence of a primary
server enables writes to commit even if other secondary
servers remain disconnected. In many cases, the primary
may be placed near the locus of update activity for a data-
base; this allows writes to commit as soon as possible.

Goal: Permit disconnected clients and groups to see their
own updates.

Design: Clients can read tentative data with an expectation
that it will be committed with the same effect if possible.

Clients that issue writes generally wish to see these
updates reflected in their subsequent read requests to the
database and may even issue writes that depend on reading
their previous writes. This should hold even if the client is
disconnected from the primary copy and the updates can-
not be immediately committed. Moreover, to the extent
possible, clients should be unaware that their updates are
tentative and should see no change when the updates later
commit; that is, the tentative results should equal the com-
mitted results whenever possible.

The Bayou system allows clients to read tentative
data, if they so desire. Essentially, each server maintains
two views of the database: a copy that only reflects com-
mitted data, and another “full” copy that also reflects the
tentative writes currently known to the server. The full
copy is an estimation of what the database will contain
when the tentative writes reach the primary.

When two secondary servers exchange tentative
writes using anti-entropy, they agree on a “tentative”
ordering for those writes. This order is based on times-
tamps assigned to each write by the server that first
accepted it so that any two servers with identical sets of
writes will order them identically. Thus, a group of servers
that are disconnected from the primary will reach agree-
ment among themselves on how to order writes and
resolve internal conflicts. This write ordering is only tenta-
tive in that it may differ from the order that the primary
chooses to commit the writes. However, in the case where
no clients outside the disconnected group perform con-
flicting updates, the writes can and will eventually be com-
mitted by the primary in the tentative order and produce
the same effect on the committed database as they had on
the tentative one.

Goal: Provide a client with a view of the replicated data
that is consistent with its own actions.

Design: Session guarantees.

A serious problem with read-any/write-any replica-
tion is that inconsistencies can appear even when only a
single user or application is making data modifications.
For example, a mobile client could issue a write at one
server, and later issue a read at a different server. The cli-
ent would see inconsistent results unless the two servers
had performed anti-entropy with one another sometime
between the two operations.

To alleviate such problems, we added session guaran-
tees to the Bayou design. A session is an abstraction for
the sequence of read and write operations performed on a
database during the execution of an application. One or
more of the following four guarantees can be requested on
a per-session basis:
• Read Your Writes - read operations reflect previous

writes.
• Monotonic Reads - successive reads reflect a non-

decreasing set of writes.
• Writes Follow Reads - writes are propagated after

reads on which they depend.
• Monotonic Writes - writes are propagated after writes

that logically precede them.
The intent is to present individual applications with a

view of the database that is consistent with their own
actions, even if they read and write from various, poten-
tially inconsistent servers. Previous work on “causal oper-
ations” has tried to provide similar guarantees for weakly
consistent replicated data, though without the per-applica-
tion fine-grain control [19]. Session guarantees do not
address the problem of isolation between concurrent appli-
cations [20].
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Practical implementations of the guarantees have
been developed in which no system-wide state is main-
tained and no additional coordination among servers is
needed. The amount of per-session state needed to ensure
all of the guarantees is small, consisting of only two ver-
sion vectors. Also, the cost of checking those version vec-
tors against a server’s vectors to determine if the server is
sufficiently up-to-date is small, and frequently can be
amortized over many session operations. Session guaran-
tees and their implementation are described in more detail
in a recently published paper [26].

Goal: Permit applications to choose an appropriate point
in the consistency/availability trade-off.

Design: Individually selectable session guarantees, choice
of committed or tentative data, age parameter on reads.

Dif ferent applications have different consistency
requirements and different tolerances for inconsistent data.
For this reason, Bayou permits applications to choose just
the session guarantees that they require. The main cost of
requesting session guarantees is a potential reduction in
availability since the set of servers that are sufficiently up-
to-date to meet the guarantees may be smaller than all the
available servers.

Second, applications may choose between committed
and tentative data. Those applications that are unprepared
to deal with tentative data and its inherent instability may
limit their read requests to only return committed data.
This choice is similar to the strict and loose read opera-
tions provided in Tait and Duchamp’s file system [25].

Finally, applications can specify an age parameter for
their reads to ensure that they see committed data in a
timely fashion. This parameter might implicitly affect the
rate at which secondary servers perform anti-entropy with
the primary. It provides clients with a type of bounded
inconsistency that resembles quasi-copies [2].

Goal: Give users ultimate control over the placement and
use of databases.

Design: Fluid replication in which the number and loca-
tions for a database can vary over time as can its primary
server.

The Bayou system uses “fluid” replication for manag-
ing copies of a database. That is, database copies are
allowed to “flow” around in the system changing their
degree of replication and their locations. The number of
servers (or copies) can vary over time. It can be specified
by clients, as well as possibly being determined by the sys-
tem based on usage patterns and network characteristics.
For example, a user with a database on his laptop is free to
pass a copy of this database to another user’s machine.
thereby creating a new server for the database. The pri-

mary server for a database may also be changed. Dynamic
replication is important in a mobile environment to deal
with anticipated network disconnections and to minimize
communication costs [1][15].

3.  Conclusions and status

The Bayou architecture supports shared databases that
can be read and updated by users who may be discon-
nected from other users, either individually or as a group.
Many of the individual design choices are similar to those
taken in previous systems for similar reasons. Our contri-
bution is in taking a fresh, bottom-up and critical look at
the requirements of mobile computing applications and in
carefully pulling together both new and existing tech-
niques into an architecture that meets these requirements.
Our emphasis is on supporting application-specific con-
flict detection and resolution and on providing application-
controlled inconsistency. We make minimal assumptions
about the sorts of communication capabilities available on
mobile computers and about the pattern of network parti-
tions and re-merging that might occur. The motivation for
this work arose from our experiences at Xerox PARC with
wireless networks and portable devices that were devel-
oped to explore our ubiquitous computing vision [27].

The Bayou architecture outlined in the paper has not
been fully implemented, though an implementation is cur-
rently underway. We are initially building clients and serv-
ers that run on SparcStations running Unix and on 486-
based subnotebooks running Linux; clients for other types
of devices, such as the ParcTab [24] will likely follow. Our
database provides a relational model while the query lan-
guage used in read operations, dependency checks, and
mergeprocs is a subset of SQL. The first Bayou applica-
tion, a meeting room calendar manager and scheduler, has
recently been completed, linked with our client stub
implementation, and tested against a rudimentary server.
We anticipate that experience obtained through building
and using applications such as this one will cause the
architecture and implementation to evolve into a practical
artifact.
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